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Neurobiology of mood, anxiety, and emotions as revealed
by studies of a unique antidepressant: tianeptine
BS McEwen1 and JP Olié2
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Recent studies have provided evidence that structural remodeling of certain brain regions is a
feature of depressive illness, and the postulated underlying mechanisms contribute to the idea
that there is more to antidepressant actions that can be explained exclusively by a
monoaminergic hypothesis. This review summarizes recent neurobiological studies on the
antidepressant, tianeptine (S-1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-
(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt), a compound with structural
similarities to the tricyclic antidepressant agents, the efficacy and good tolerance of which
have been clearly established. These studies have revealed that the neurobiological properties
of tianeptine involve the dynamic interplay between numerous neurotransmitter systems, as
well as a critical role of structural and functional plasticity in the brain regions that permit the
full expression of emotional learning. Although the story is far from complete, the schema
underlying the effect of tianeptine on central plasticity is the most thoroughly studied of any
antidepressants. Effects of tianeptine on neuronal excitability, neuroprotection, anxiety, and
memory have also been found. Together with clinical data on the efficacy of tianeptine as an
antidepressant, these actions offer insights into how compounds like tianeptine may be useful
in the treatment of neurobiological features of depressive disorders.
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Depression is a complex, heterogeneous disorder, and
the mechanisms underlying its pathogenesis are the
subject of intensive investigation using pharmacologi-
cal and genetic tools and animal models. The
antidepressant effect of one of the early antidepres-
sants, imipramine, discovered by a clinical team,1 was
initially linked to an inhibition on monoamine
reuptake. This led to research on the role of imbal-
ances in neurotransmission by the monoamines,
which are extensively distributed throughout the
network of limbic, striatal, and prefrontal cortical
neuronal circuits.2 The monoamine hypothesis, that is,
depression involves imbalances in serotonergic, nora-
drenenergic, and possibly dopaminergic function, has
led the way for many years as the primary explanation
for depressive illness. However, monoamine deficits
are only part of the story and events beyond mono-
amine imbalance must be taken into account.3,4

For example, certain brain regions are reported to
undergo structural changes in depression5,6 and, thus,
pharmacological treatments should be sought to
reverse structural changes in brain. A decrease in

hippocampal and prefrontal cortical volumes is reported
in patients suffering from recurrent major depression.7–10

That morphological changes in the hippocampus can be
observed in patients in a first episode of depression
remains a matter of debate.11,12 Structural imaging
studies have demonstrated reduced gray matter volumes
in areas of the orbital and medial prefrontal cortex,
ventral striatum, and hippocampus, and enlargement of
the third ventricle of patients with mood disorder.12–15

Atrophy of prefrontal cortical cells (ie both neurons and
glia) has been reported in post-mortem studies.16–18

Although the amygdala appears to shrink with pro-
longed depression,19 amygdala enlargement has been
reported in the first episode of major depression.10,20

Neurogenesis in the dentate gyrus of the hippo-
campal formation may be involved in the mechanism
of action of a wide range of antidepressants.21–23 This
fascinating finding requires further research in order
to understand how the mechanism of antidepressant
treatments might converge to regulate common events
such as neurogenesis and other forms of structural
plasticity. Moreover, the concept of a serotonergic
deficit in depression is particularly challenged by the
drug tianeptine (S-1574, [3-chloro-6-methyl-5,5-di-
oxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl)
amino]-7 heptanoic acid, sodium salt), an antidepres-
sant with structural similarities to the tricyclic anti-
depressant agents but with different pharmacological
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properties. Collectively, these data require that we
look beyond the monoamine hypothesis of depres-
sion. The goal of this review is to summarize recent
neurobiological studies of tianeptine that have un-
covered potentially useful effects on structural plas-
ticity, neuronal excitability, neuroprotection, anxiety,
and memory (Table 1). Together with clinical data on
the efficacy of tianeptine as an antidepressant, these
actions offer insights into how tianeptine may be
useful in the treatment of depressive disorders.

Pharmacological and clinical features of tianeptine

Tianeptine shows no affinity for neurotransmitter
receptors and does not inhibit the uptake of serotonin
or noradrenaline in the central nervous system.24

Chronic tianeptine administration did not alter the
concentration and affinity of alpha2, beta1, 5-HT1,
5-HT2, benzodiazepine, or GABA-B receptors24 but
increased the responsiveness of the alpha1-adrenergic
system.25 Tianeptine does not inhibit MAOa and
MAOb activity in the cortex, hippocampus, and
hypothalamus. Interestingly, the uptake of 5-HT but
not of dopamine or noradrenaline from cortical or
hippocampal rat synaptosomes was reported to be
increased by tianeptine ex vivo after acute and
chronic administration, while no effect on 5-HT
release was observed.26,27 More recently, it has been
demonstrated that tianeptine also reduced both the
number of transporter sites and their mRNA levels in
the dorsal raphe nucleus.28 From an electrophysiolo-
gical point of view, sustained administration of
tianeptine did not modify the spontaneous firing rate
of dorsal raphe 5-HT neurons nor did it alter the
sensitivity of somatodendritic 5-HT autoreceptors to

LSD. Tianeptine did not modify the activity of
postsynaptic 5-HT1A receptors nor the effectiveness
of the terminal 5-HT autoreceptor antagonist in
increasing the efficacy of the stimulation of the 5-
HT pathway, despite prolonged treatment.29

However, tianeptine does exert positive effects in
several animal models of depression.30,31 Moreover,
the clinical efficacy of tianeptine in the treatment of
depression together with its good tolerance in terms
of anxiolytic effect without sedation, rate of sexual
disturbances and weight gain, have been clearly
demonstrated in controlled trials up to 18 months in
duration. The efficacy of tianeptine has been estab-
lished against placebo and reference antidepressants
of different classes, mainly tricyclics and SSRIs.32–40

In addition, tianeptine alleviates anxious symptoms
associated with depression,34,39,41–46 a property not
associated with sedative effects.47 The alleviation of
inner tension is also more rapid than fluoxetine
effects.48 Actually, the use of tianeptine is not
associated with the adverse effects commonly
reported with tricyclic antidepressants (sedation,
effects on attention and memory) or SSRIs (sexual
dysfunction, nausea).

Neurobiological properties of tianeptine

Regulation of hippocampal structural plasticity
Tianeptine is able to modify the structural plasticity
induced by stress in animal models including an
animal model of depression. This was demonstrated
for the first time in the model of stress-induced
atrophy, or remodeling, of hippocampal neurons. The
remodeling (ie decreased number and length of
the apical dendritic branches) is observed in CA3

Table 1 Summary of the main recent neurobiological properties of tianeptine

Structural plasticity
Hippocampus
K Prevents stress-52 and corticosterone-51 induced dendritic atrophy in the hippocampus (CA3)
K Opposes stress-induced decrease in proliferation rate of precursor cells (dentate gyrus)22

K Opposes stress-induced decrease in the hippocampal volume22

K Opposes stress-induced decrease in concentrations of N-acetylaspartate22

Amygdala
K Prevents dendritic hypertrophy in the BLA116

Neuronal excitability
K Overcomes the block of hippocampal LTP induction by inescapable stress108

K Reverses the inhibitory effects of stress on LTP at hippocampal–prefrontal synapses110

K Reverses the stress-induced suppression CA1 PB113

Neuroprotection
K Reduces apoptosis in the hippocampus and temporal cortex84

Memory
K Blocks stress-induced impairments of spatial memory performance97

K Antagonizes the deleterious effects of alcohol22

K Facilitates focused attention behavior99

K Enhances memory retention95,100
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526

Molecular Psychiatry



pyramidal neurons of rodents and tree shrews, occurs
after 2–3 weeks of exposure to restraint stress, long-
term social stress, or upon exposure to high levels of
glucocorticoids (suggesting a role for HPA axis).49,50

Tianeptine prevents this dendritic atrophy in hippo-
campal pyramidal CA3 neurons 51,52 (Figure 1). This
was measured as a prevention of the stress-induced
decrease in the number and length of apical dendrite
branch points.

The remodeling in the CA3 region is reversible after
termination of 3 weeks of stress and is not a form of
permanent hippocampal damage.53 Indeed, tianeptine
treatment was able to reverse dendritic remodeling
caused by corticosterone in the drinking water for 3

weeks even while the corticosterone treatment con-
tinued52 (Figure 2). In being able to prevent or reverse,
stress- and corticosterone-induced dendritic remodel-
ing, tianeptine differs from other antidepressants like
serotonin-selective reuptake inhibitors for which no
inhibition of stress-induced dendritic remodeling has
been demonstrated.52 Only one descriptive study,
unfortunately not using a quantitative approach, has
reported that fluoxetine was able to reverse the
atrophy of hippocampal neurons caused by chronic
mild stress in rats.54

Tianeptine’s effects of preventing or even, to some
extent, reversing stress-induced structural plasticity
have also been demonstrated in a more naturalistic
psychosocial stress model. Czéh et al22 have investi-
gated whether administration of tianeptine would
oppose stress-induced adverse effects in the hippo-
campal formation in the chronic psychosocial stress
model of adult male tree shrews (Tupaia belangeri).
This animal model has a high validity to investigate
the pathophysiology of depressive disorders.55,56 To

0

5

10

15

20

Control Stress Stress + Stress +

N
um

be
r 

of
 d

en
dr

iti
c 

br
an

ch
 p

oi
nt

s

Basal tree

Apical tree

Fluoxetine Tianeptine

**

*

0

500

1000

1500

Control Stress Stress + Stress +

T
ot

al
 d

en
dr

tic
 le

ng
th

 (
µm

)

Fluoxetine Tianeptine

*
**

a

b

Figure 1 Effect of repeated restraint stress and cotreatment
with fluoxetine and tianeptine on the number of dendritic
branch points (panel a) and total dendritic length (panel b)
of CA3 pyramidal neurons. After 21 days of daily restraint
stress, a decrease in the number of branch points and total
dendritic length of CA3 apical dendritic trees was observed.
While the antidepressant fluoxetine, 10 mg/kg i.p. prior
each restraint–stress session, was without effect, tianeptine,
10 mg/kg i.p. prior each restraint–stress session, prevented
the hippocampal atrophy induced by stress. *Po0.05,
**Po0.01, compared with controls. One-way ANOVA,
Tukey’s post hoc test. Bars represent meansþSEM (rep-
rinted from Magariños et al. Eur J Pharmacol 1999; 371:
123–122).
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Figure 2 Effects of tianeptine (15 mg/kg/day i.p. for 21
days) and corticosterone on the number of branch points (a)
and total length (b) of apical CA3 dendrites. For both
measures, tianeptine prevents the significant decrease
induced by corticosterone. *Po0.05, Tukey after one-way
ANOVA (reprinted from Watanabe et al. Eur J Pharmacol
1992; 222: 157–162).
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mimic a realistic situation of antidepressant interven-
tion, animals were treated after 7 days of stress
exposure, when stress-induced accommodation of
the brain was being established, and the therapeutic
action of tianeptine was followed across a clinically
relevant time period of 4 weeks. The authors found in
this paradigm significant decrease in the in vivo
concentrations of cerebral metabolites like N-acety-
laspartate (a putative marker of neuronal viability and
function), the proliferation rate of the granule pre-
cursor cells in the dentate gyrus, and the hippocam-
pal volume. Tianeptine reversed all these alterations:
brain metabolites were normalized and stress-in-
duced reduction in cell proliferation was reversed
(Figure 3).

The histological analysis of Czéh’s study could only
evaluate the rate of cell proliferation since animals
were killed 24 h after the administration of BrdU.
Therefore, that the majority of these cells would have
differentiated into mature neurons that are integrated
into the hippocampal circuitry and, thus, may
contribute to the therapeutic response of tianeptine
remains to be demonstrated. Nevertheless, for the first
time, Czéh’s findings demonstrate regulation by an
antidepressant of the decreased neuronal metabolism
and function together with cell proliferation decrease,
and that in a prosimian model of depression. More
recently, the effects of other well-established anti-
depressants, such as fluoxetine and clomipramine,
have been successfully investigated on neurogenesis
in animals submitted to various stress.21,23,57

What kind of mechanism could subserve these effects?
Recent data suggest that antidepressants facilitate
activity-dependent selection of functional synaptic
connections in brain and, through their neurotrophic
effects, improve information processing within neu-
ronal networks compromised in mood disorders.58 In
fact, an increasing number of studies suggest that it is
the ability to modify synaptic plasticity that is the
crucial feature of clinically effective antidepressants,
rather than the enhancement of neuronal survival
alone. The emerging pharmacological profile of
tianeptine suggests that this antidepressant may serve
to organize synaptic function, thereby allowing the
chemical signal to reinstate the optimal functioning of
critical circuits necessary for normal affective func-
tioning.

There are multiple pathways that may mediate the
changes in connectivity induced by antidepressants.
The underlying molecular and cellular mechanisms
that contribute to hippocampal neurogenesis are not
yet clearly understood. Among the candidate mole-
cules that could mediate the trophic effect of
tianeptine and other antidepressants are growth
factors. Indeed, microinfusion of brain-derived neu-
rotrophic factor (BDNF) or neurotrophin 3 (NT-3) into
the hippocampus produces antidepressant effects in
experimental models of depression.59 However, Kur-
oda and McEwen60 have shown that chronic tianep-
tine administration in a chronic restraint stress model

does not modulate BDNF or NT-3 mRNA levels,
suggesting that the mechanisms of action of tianep-
tine are distinct from those of SSRIs. Yet, other
candidates are epidermal growth factor (EGF) and
insulin-like growth factor (IGF-1). Indeed, dentate
precursor cells are known to express EGF receptors
and direct infusion of the growth factor into the
dentate gyrus stimulates proliferation.61 Selective
induction of neurogenesis has also been achieved
using IGF-1.62,63 Further studies should elucidate the
possible involvement of these molecules in the

Figure 3 Tianeptine opposes the stress-induced adverse
effects in the hippocampal formation in the chronic
psychosocial stress model of adult male tree shrews (T.
belangeri). (a) Chronic psychosocial stress significantly
suppressed cell proliferation in the hippocampal dentate
gyrus (stress), whereas chronic tianeptine treatment (50 mg/
kg/day p.o. for 28 days) reversed the stress-induced effect
(stressþ tianeptine). Antidepressant treatment alone had an
insignificant effect on hippocampal cell proliferation (con-
trolþ tianeptine). Results are given as mean7SEM number
of BrdU-positive cells in the hippocampal dentate gyrus.
*Po0.05 vs controls. (b) Post-mortem volumetry of the
hippocampus. Chronic psychosocial stress resulted in a
decrease (7%) of the hippocampal volume compared with
unstressed controls (Po0.05). This decrease was prevented
by tianeptine treatment (stressþ tianeptine vs stress;
*Po0.05) (reprinted from Czéh et al. Proc Natl Acad Sci
USA 2001; 98: 12796–12801).
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mechanism of action of tianeptine and other anti-
depressants.

The atrophy of the hippocampus might involve
steroid modulation of neurotransmitter activity in the
hippocampus including the serotonergic, GABAergic,
and glutamatergic systems.64 Regarding the latter,
there is evidence that antidepressants may regulate
the excitatory amino-acid systems that underlie
changes in synaptic connection strength (in addition
to enhancing BDNF expression). A number of anti-
depressants have regulatory actions at the N-methyl-
D-aspartate (NMDA) receptor complex and some
NMDA receptor antagonists not only have antide-
pressant properties65 but also prevent stress-induced
dendritic remodeling of CA3 pyramidal neurons.66,67

In line with this, tianeptine prevents the stress-
induced reorganization of glutamatergic synaptic
vesicles in the mossy fibers abutting CA3 neurons.68

Thus, for tianeptine as for a number of other
antidepressants, the modulation of the glutamatergic
system could underlie its normalization effect on
synaptic function.

Reagan et al69 have explored the regulation of glial-
specific excitatory amino-acid transporter (GLT-1a)
under conditions that produce hippocampal dendri-
tic remodeling (chronic stress) and found increases in
GLT-1a mRNA expression in the dentate gyrus and the
CA3 regions of the rat hippocampus, an effect which
is inhibited by tianeptine (Figure 4). Increases in GLT-
1a may result from stress-mediated increases in
glutamate70,71 and normalization of synaptic concen-
trations of glutamate by tianeptine would eliminate
the stimulus for increased GLT-1a expression. Mod-
ulation of GLT-1a expression does not result from
changes in hippocampal morphology, but rather
reflects fundamental changes in the underlying
neurochemical or molecular activities of the hippo-
campus in response to stress. Reagan’s findings thus
provide additional support for the hypothesis that
stress-induced changes in the hippocampus involves
a critical role in glutamate metabolism, disposition,
and plasticity, and a dynamic interplay between
numerous neurotransmitter systems, especially exci-
tatory amino acids.72,73

Electrophysiological studies focusing on hippocam-
pal synaptic plasticity further demonstrated similar
protective effect of tianeptine application both in vivo
and in vitro. Using a combined approach of repeated
stress and electrophysiological recording, Kole et al74

found that restraint stress for 21 days persistently
enhances the NMDA-receptor component of EPSCs of
the commissural/associational synapses onto CA3
pyramidal neurons, and that, when rats were con-
comitantly treated with tianeptine, several specific
changes in NMDA and AMPA/kainate receptor-
mediated currents are induced. First, tianeptine
selectively counteracted the stress-induced increase
in the NMDA-AMPA/kainate ratio (Figure 5). More-
over, as the enhancement of EPSCs could be blocked
by the intracellular presence of the kinase inhibitor,
staurosporine, the involvement of a postsynaptic

phosphorylation cascade rather than presynaptic
release mechanisms at the CA3 commissural/associa-
tional synapses may be involved.

The CA3 commissural/associational synapses are
characterized by their autoinnervation from the cell
body and collateral axons of neighboring CA3 cells
providing a strong excitatory associative feedback
network.75 These hippocampal recurrent synapses
could store autoassociative episodic memories.76,77 A
direct block by tianeptine at the NMDA channel, such

Figure 4 GLT-1a mRNA expression in the hippocampus of
rats subjected to chronic stress. (a) Chronic stress (stress)
did not modulate GLT-1a mRNA levels in the CA1 and CA2
regions of Ammon’s Horn but increased GLT-1a mRNA
levels in CA3 (CA3-or: stratum oriens; CA3-rad: stratum
radiatum). These increases were reversed by daily tianep-
tine (10 mg/kg i.p. prior each restraint–stress session)
administration (þ tianeptine). (b) In the dentate gyrus,
chronic stress increased GLT-1a mRNA levels in the
molecular layers of the superior blade of the dentate gyrus
(DGs-mol) and the inferior blade of the dentate gyrus (DGi-
mol). Daily tianeptine administration inhibited stress-
mediated increases in GLT-1a mRNA expression. All
comparisons to vehicle-treated, nonstressed controls;
*Pr0.01 (modified from Reagan et al. Proc Natl Acad Sci
USA 2004; 104: 2179–2184).
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as the antidepressant imipramine produces,78,79 is not
likely to have caused this normalized ratio of
glutamate receptor-mediated currents since tianep-
tine did not bind to excitatory amino-acid receptors.24

On the other hand, a concurrent downregulation of
selective NMDA-receptor subunits by tianeptine
could be suggested, as already observed with tricyclic
compounds and selective serotonin reuptake inhibi-
tors.65 Audinat et al80 found that, on hippocampal
slices, tianeptine increased field potential recorded in
the CA1 region (following Schaffer collateral stimula-
tion) and increased the amplitude of postsynaptic
responses of both CA1 pyramidal cells and interneur-
ons. Thus, although direct effects of tianeptine on
glutamatergic receptors can be excluded, the anti-
depressant increases both NMDA- and AMPA-
mediated current. Collectively, Kole’s and Audinat’s
data suggest that tianeptine-enhanced hippocampal
pyramidal activity is most probably attained by
strengthening the conductance for receptor-mediated
EPSCs, thereby increasing subthreshold voltage pro-
pagation and reducing action potential threshold.

Tianeptine-induced EPSC enhancement is obtained
rapidly, but repeated exposure to tianeptine resulted
in an enduring expression of EPSC increase.80

Tianeptine may target the phosphorylation state of
glutamate receptors at the CA3 commissural/associa-
tional synapse. Tianeptine-induced phosphorylation
of intracellular kinases could provide a priming
signal for the activity-dependent structural shaping
of dendrites, either by promoting dendritic outgrowth
or providing enhanced structural stability. For exam-
ple, the calcium-calmodulin-dependent protein ki-
nase II (CaMK II) is involved in stabilizing structural
rearrangements.81 Chronic, but not acute treatment
with tianeptine caused increased phosphorylation of

the CaMK II-PKC site (Ser831) on GluR1 subunit of
AMPA receptors in the hippocampus (CA3 and
dentate gyrus) and cerebral cortex of mice. Although
there was a trend for an increase, the PKA site
(Ser845) was not significantly affected by tianep-
tine.82 CaMK II is markedly enriched at synapses,
where it is involved in the control of synaptic
transmission, transmitter release, and synaptic plas-
ticity. CaMK II has also been found to be involved in
the long-term action of a wide variety of antidepres-
sant treatments including electroconvulsive treat-
ment. Thus, the findings obtained with tianeptine
add physiological evidence to the hypothesis that
kinase phosphorylation, more particularly changes in
CaMK II activity, following chronic antidepressant
treatment might represent an important step in the
expression of their antidepressive action.

A number of other critical molecules in neuro-
trophic signaling cascades (most notably cyclic ade-
nosine monophosphate (cAMP), response element
binding protein (bcl-2), and mitogen-activated protein
(MAP) kinases) are also potential targets for tianeptine
potentiating modalities. Tianeptine-induced phos-
phorylation of such kinases could thus explain how
the drug reverses and/or prevents the stress-induced
reduction of CA3 apical dendrites. Moreover, it will be
important to determine which pathways are shared by
other antidepressants, or, alternatively, how other
antidepressants may converge on the same end point,
such as AMPA receptors, via different pathways.

Thus, at the present time, the contribution of these
molecules to the mechanism of action of tianeptine
remains to be demonstrated, but the novel signal
transduction mechanisms that have been recognized
so far may provide a mechanistic resolution for the
neuroprotective properties of tianeptine and, more-
over, suggest a pharmacological trajectory for the
memory-enhancing and/or antidepressant activity of
tianeptine (see below).

Cytoprotective effects
Tianeptine exhibits cytoprotective effects against the
potentially deleterious effects of proinflammatory
cytokines in both the cortex and white matter.83

Moreover, Lucassen et al84 have hypothesized that
tianeptine may have putative cytoprotective effects in
chronically stressed animals and they investigated
the effect of tianeptine treatment on apoptosis in the
hippocampus and temporal cortex of adult tree
shrews. Both stress and tianeptine had region-specific
effects and tianeptine treatment reduced apoptosis in
the dentate granule cell layer and subgranular zone,
most likely on non-neuronal cells, but had no effect in
the Ammon’s Horn. These effects were not restricted
to the hippocampus alone, as in the temporal cortex,
chronic stress alone increased the numbers of apop-
totic cells,85 while tianeptine treatment had an
antiapoptotic effect both in the stressed and unchal-
lenged animals84 (Figure 6).

The most pronounced effects of tianeptine are
exerted in the dentate granule cell layer and in the
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adjacent subgranular zone within the hippocampal
formation, which gain special significance when
considering the study of Czéh et al22 in an animal
model of depressive disorders. Thus, not only
cytogenesis but also cell death, and therefore the
entire process of adult dentate gyrus neuronal turn-
over, is affected by tianeptine treatment. In line with
the antiapoptotic effect observed post-mortem by
Lucassen et al,85 tianeptine prevented the stress-
induced reduction of the in vivo brain metabolite
levels of N-acetylaspartate.22 Several other studies
have shown protective effects of antidepressants in
different models, and mostly in the hippocampus.58,86

In a maternal deprivation and a prenatal restraint
stress model, alterations in granule cell number and
neurogenesis as well as apoptosis occur87,88 and these
changes could be normalized by fluoxetine treatment.

The cortical effects of tianeptine are consistent with
several reports on structural alterations in discrete

human brain areas, like the anterior cingulate,
dorsolateral prefrontal, subgenual, and orbitofrontal
cortices, as well as the parahippocampal cortex and
the amygdala, that are characterized by decreases in
glia number or density.89–91 Fuchs and Lucassen’s data
suggest that the cell survival-promoting effects of
tianeptine may represent a more general mechanism
of action that involves not only the hippocampus and
cortical areas but may extend also to different brain
regions of the limbic system, and that it involves glial
cells as well as neurons.

Procognitive effects
Cognitive deficits, such as an impairment of attention,
memory, and problem solving, have often been
reported in patients with depressive disorders.92 The
magnitude of the hippocampal atrophy reported here
in certain experimental conditions may partly under-
lie some of cognitive deficits that accompany major

Figure 6 Effects of chronic psychosocial stress and concomitant tianeptine treatment (50 mg/kg/day p.o. for 28 days) on
apoptosis in the temporal cortex (a), Cornu Ammonis (b), dentate granule cell layer (c), and subgranular zone (d) of the tree
shrew. (a) In the temporal cortex, chronic stress resulted in a significantly increased occurrence of apoptotic cells, whereas
antidepressant treatment had a significant antiapoptotic effect both in the control and stressed animals. (a) In the Ammon’s
Horn, the frequency of apoptosis was significantly suppressed after 5 weeks of psychosocial stress. (c and d) Both in the
granule cell layer and subgranular zone of the dentate gyrus drug treatment significantly decreased the incidence of
apoptosis (two-way ANOVA, main effect of drug treatment: Po0.01). Results are given as the mean number of ISEL-positive
cells/section7SEM. *Po0.05, vs control: ##Po0.01, ###Po0.001, vs stress are results of the Newman–Keuls post hoc analysis
(reprinted from Lucassen et al. Biol Psychiatry 2004; 55: 789–796).
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depression. Conversely, any prevention or restoration
of these morphological changes (volume loss) in the
hippocampus should be parallel to procognitive/
promnesiant effects. Accordingly, tianeptine has
particularly favorable effects on cognitive functions
and the positive effect of tianeptine may be mediated,
at least in part, through its upregulation of neurogen-
esis and dendrite remodeling. Thus, tianeptine blocks
the dendritic remodeling caused by stress or gluco-
corticoids,51,52 blocks stress-induced impairments of
spatial memory performance in radial and Y-
maze,93,94 and antagonizes the deleterious effects of
alcohol.95

Yet, tianeptine effects can also be rapid. In a
validated model of hippocampal-dependent memory
impairment and synaptic plasticity changes by pre-
dator stress,96 acute tianeptine can block the deleter-
ious effects of stress on spatial memory,97 an effect
that does not depend on corticosterone levels.98

Tianeptine also facilitates focused attention behavior
in the cat in response to its environment or towards a
significant stimulus.99 It was shown to exert improv-
ing effects on learning as well as on working memory
and on reference memory in rodents95,100 and to
exhibit vigilance-enhancing effects in rats101 and
monkeys.102

Moreover, Morris et al103 found that acute tianep-
tine treatment can enhance memory retention in
animals whose rate of forgetting of spatial memory
in the water-maze has been increased through partial
lesions of the diagonal band of Broca, which mainly
supply the dentate gyrus and the adjacent CA3 and
CA4 subfields of Ammon’s horn104 and provide direct
and indirect (disinhibitory) excitatory inputs to the
hippocampus. The behavioral findings of Morris et
al103 are consistent with findings that revealed that
tianeptine prevents vesicular reorganization in mossy
fibers caused by stress.51,66–68 Morris’ findings indi-
cate that the input into the CA3 and dentate gyrus,
that is, the main hippocampal areas where neurogen-
esis occurs, are key sites for the procognitive action of
tianeptine.

Tianeptine’s effects involve a dynamic interplay
between different brain regions
Whereas the hippocampus is one of the most
intensely studied structures, other brain regions
involved in stress, fear, emotions, and memory, which
are involved in regulating the HPA axis through
excitatory inputs, are beginning to receive increasing
attention.105,106

Medial prefrontal cortex
There is also a clear relationship between the
hippocampus and frontal cortex and dynamic
changes in synaptic connectivity such as long-term
potentiation (LTP) can be demonstrated in the medial
frontal cortical areas.107 When administered several
hours after the stress, tianeptine overcomes the block
of hippocampal LTP induction by inescapable stress
at a dose level that did not affect LTP in nonstressed

animals.108 This finding is consistent with the report
that tianeptine can reverse stress-suppressed explora-
tion of a novel environment when injected after the
stress.109

Rocher et al110 have shown that severe acute
platform stress in rats caused a long-lasting inhibition
of LTP in the frontal cortex evoked by stimulation of
hippocampal outflow. In agreement with the observed
effects of acute tianeptine in intrinsic hippocampal
circuits,108 acute tianeptine rapidly reverses the
inhibitory effects of stress on LTP at hippocampal–
prefrontal synapses (Figure 7). Thus, while tianeptine
has been shown to have a strong impact on the
deleterious effects of stress in the hippocampus,
Rocher’s data reinforce this outcome to another brain
region of interest for depression, the frontal cortex.

Repeated restraint stress, such as is used to cause
remodeling of the hippocampus in rats, causes short-
ening of dendrites in the medial prefrontal cortex.111

It remains to be determined whether chronic tianep-
tine treatment will prevent these changes as it does
for atrophy of hippocampal neurons.

Amygdala
Conrad et al53 have postulated that chronic stress
would enhance cued conditioning but not context
conditioning. They showed that repeated restraint
stress facilitates fear conditioning to both context and
tone independently of causing hippocampal CA3
dendritic atrophy. Tianeptine failed to prevent the
stress effects on fear conditioning, even though it did
prevent neuronal atrophy in the hippocampus. Con-
rad’s findings indicate that the retraction of the CA3
dendrites was present 4 days, but not 10 or 20 days,
after the cessation of the restraint stress. Conse-
quently, changes in fear conditioning cannot be
attributed to the CA3 atrophy having reversed itself
before the end of the conditioning paradigm. How-
ever, restoration of normal dendritic morphology
within 10 days emphasizes the importance of asses-
sing possible stress-induced behavioral deficits before
the atrophy disappears. The failure of tianeptine to
block the stress-induced changes in fear conditioning
and open-field behavior is an indication of dissocia-
tion between the behavioral and morphological
consequences of repeated stress. Conrad suggests that
dendritic atrophy is not a form of permanent
hippocampal damage, but a type of structural plasti-
city, or ‘remodeling’, which could be an adaptation to
chronic stress. Although these findings do not
exclude the possibility that the stress-induced hippo-
campal CA3 atrophy affects some aspects of condi-
tioned fear, they do indicate that repeated restraint
stress over 21 days has a powerful enhancing effect on
emotionality that may be attributable to the over-
riding effects of chronic stress on other brain regions
such as the amygdala. There is evidence for a critical
role for the amygdala in the stress circuitry, which
comes from behavioral studies of learning and
memory. Repeated stress that produces dendritic
remodeling in the CA3 region impairs hippocampal-
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dependent learning, but stress might also impair
memory through nonhippocampal mechanisms such
as enhanced emotionality.53

Anatomically, the amygdala is connected both
directly (amygdalo-hippocampal bundles arise from
the basolateral amygdala and terminate in the CA1,
the CA3, and the subiculum) and indirectly (through
the entorhinal cortex) to several hippocampal
regions.112 Diamond and colleagues also have studied

the effects of acute tianeptine and stress on hippo-
campal and basolateral amygdaloid (BLA) plasticity.
Rats were stressed by a cat intruder for 1 h and
recordings in CA1 and BLA were performed. Primed
burst (PB) or LTP stimulation was delivered to the
hippocampal commissure for CA1 and BLA record-
ings or to the entorhinal cortex for BLA recordings.
Tianeptine enhanced CA1 PB and increased baseline
excitability in the nonstress group, and reversed the
stress-induced suppression of CA1 PB. Neither stress
nor tianeptine affected CA1 LTP. Stress alone en-
hanced LTP in the BLA of vehicle-treated rats, as well
as in the stressed tianeptine-treated rats. Thus, these
findings indicate that tianeptine can reverse the
adverse effects of stress on hippocampal processing
without interfering with the naturally enhancing
effects of stress on amygdaloid processing.113

In view of the potentially contrasting impact of
chronic stress on the hippocampus and amygdala at
the behavioral level, and the different roles played by
these two structures in the neural circuitry of stress, it
is important to examine the effects of chronic stress at
the level of single neurons. Using morphometric
techniques, Chattarji et al114 have demonstrated that
chronic stress induce contrasting patterns of dendritic
remodeling in hippocampal and amygdaloid neu-
rons.114,115 Chronic immobilization stress elicited
significant dendritic atrophy in hippocampal CA3
pyramidal neurons, as previously reported but, in
striking contrast, chronic immobilization stress in-
creased dendritic arborization in BLA neurons. This
stress-induced enhancement in dendritic arborization
did not represent a generalized increase in all classes
of BLA neurons, but was restricted only to BLA
pyramidal and stellate neurons, which are presum-
ably excitatory projection neurons.

Stress-induced dendritic remodeling in the amyg-
dala may provide a potential cellular substrate for
depression caused by chronic stress. The effects of
tianeptine on stress-induced dendritic remodeling in
the basolateral amygdala have been investigated.
Strikingly, stress-induced enhancement in dendritic
arborization in the BLA neurons was completely
prevented in tianeptine-treated animals.116 Moreover,
prevention of dendritic hypertrophy in the BLA by
tianeptine was associated with a preventive effect of
the antidepressant on potentiation of anxiety-like
behavior in male rats. Nevertheless, Conrad et al53

reported that repeated restraint stress enhanced
freezing to context and tone and decreased open-field
exploration irrespective of whether tianeptine was
given or not, suggesting no association between
morphological and behavioral effects. At present,
there is no explanation for the difference in efficacy
of tianeptine in the two studies. It remains to be seen
whether the difference between these findings is due
to the fact that Conrad used restraint stress for 21
days, whereas the Chatterji group used a 10-day
immobilization (a more severe stressor).

Yet, there is other evidence for anxiety reduction by
tianeptine. When administered acutely, tianeptine
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Figure 7 Severe acute platform stress in rats caused a
remarkable and long-lasting inhibition of LTP in the frontal
cortex evoked by stimulation of hippocampal outflow.
Tianeptine (10 mg/kg i.p. in saline 40 min prior to induction
of LTP) rapidly reverses the inhibitory effects of stress on
LTP at hippocampal–prefrontal synapses. (a) Stressed rats.
Tianeptine fully restores LTP from stress-induced impair-
ment. (b) Unstressed rats. Tianeptine does not significantly
affect LTP. Values are mean7SEM of the normalized
hippocampal–frontal cortex postsynaptic response ampli-
tude. The high-frequency stimulation (HFS) is represented
by arrows. (c) By comparison, fluoxetine (10 mg/kg i.p. in
saline 40 min prior to induction of LTP) partially overcomes
the stress-induced impairment of frontal LTP (reprinted
from Rocher et al. Cereb Cortex 2004; 14: 224–229).

The antidepressant tianeptine
BS McEwen and JP Olié
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counteracted the anxiogenic effect of benzodiazepine
and alcohol withdrawal in the social interaction test,
whereas no effects were observed in the stress-
induced hyperthermia, elevated plus-maze, and so-
cial interaction test.117,118 Recent data also provide
some convergence on the potential efficacy of tianep-
tine in terms of its action on the amygdala. Wood et
al119 have shown that chronic tianeptine prevented
stress-induced potentiation of aggressive conflicts,
such that there was an interaction between chronic
stress and tianeptine treatment throughout the study.
Tianeptine also significantly reduced the incidence of
aggressive conflicts in stressed and unstressed control
rats during periods when aggression is high. More-
over, Burghardt et al120 reported that chronic tianep-
tine given for 21 days before training can reduce
conditioned freezing, very much as chronic SSRI
treatment is able to do; however, tianeptine was
devoid of anxiogenic effects after acute administra-
tion, whereas acute SSRI treatment increased anxiety.
All these phenomena are likely to reflect amygdala
function.

Conclusions

The clinical efficacy of tianeptine in the treatment of
depression together with its good tolerance has been
clearly demonstrated in controlled trials. However,
the generally accepted theories about the biological
basis of depression, for example, a serotonergic
deficit, cannot explain its antidepressant activity
and events beyond the monoaminergic regulation
must be taken into account. The neurobiological
properties of tianeptine involve a critical role of
structural and functional plasticity in several brain
regions of the limbic system, as well as the dynamic
interplay between numerous neurotransmitter sys-
tems including excitatory amino acids. Some of these
properties appear to be shared by other antidepres-
sants. Moreover, the neurobiological properties of
tianeptine, involving trophic effects on the alteration
of plasticity in the hippocampus and amygdala, are
relevant to its clinical efficacy for the treatment of
depression as well as its reported effects on memory
and anxious symptoms of depression. Collectively, it
is of great interest that the antidepressant tianeptine
acts on dendritic remodeling, both in amygdala and
the hippocampus, two limbic regions, which are
central and intimately linked to the full expression
of emotional learning.

Cognitive deficits, such as an impairment of
attention, memory, and problem solving, have often
been reported in patients with depressive disorders.92

The hippocampus plays a critical role in learning and
memory and the magnitude of the hippocampal
volume loss may partly explain some of the cognitive
deficits that accompany major depression. Tianeptine
has a unique impact on the alteration of plasticity in
the hippocampus, which may thereby participate in
accelerating neural adaptive mechanisms that may be
deficient, and the improvement in memory function

by tianeptine may represent the partial restoration of
normal functional plasticity in the hippocampus.
Interestingly, subjects with mild cognitive impair-
ment (MCI) who subsequently developed clinical
Alzheimer’s disease exhibit a greater rate of hippo-
campal atrophy than those remaining clinically
stable.121,122 Therefore, tianeptine treatment, which
is aimed at facilitating trophic function, may prove
highly beneficial in attenuating the rate of neural
degeneration leading to short-term memory loss
observed in MCI.

Tianeptine is also effective in treating anxiety. It
rapidly alleviates anxious symptoms of depressed
patients34,39,41–46 with no sedative-associated effects.47

Tianeptine and other antidepressants share some
common effects such as those on neurogenesis. These
findings reinforce the credibility of the neuroplasti-
city approach to the pathophysiology of depression.
However, antidepressants of different classes may
differ in their ability to produce other types of
structural changes. Although neurogenesis seems to
be a key point in the mechanism of action of
antidepressants, the story is far from being complete
in light of other forms of structural plasticity, such as
dendritic remodeling and turnover of glial cells, that
can also be involved in the mechanism of action of
antidepressant drugs. To date, the schema underlying
the effect of tianeptine on central plasticity is the
most thoroughly studied among antidepressants.
Insofar as data are still missing with most of the other
antidepressants, it may be that some of the reported
effects of tianeptine on brain plasticity do not
represent a common feature of all antidepressants.
However, while all drugs do not need to act by the
same mechanism, the neurobiological properties of
tianeptine, particularly the effects on various forms of
neural plasticity, may be critical for its therapeutic
effects.

Finally, concerning tianeptine and other antide-
pressants, it has recently been reported that the brain
sites of change produced by successful antidepressant
and cognitive behavior therapies (CBT) are different
from each other, reflecting ‘bottom-up’ (ie limbic and
subcortical brain regions) for antidepressants, and
‘top-down’ (frontal cortex) sites of alterations for
CBT.123 This means that it is the overall modulation
of this complex network of neural circuits, rather than
one focal site of action, that results in reduced
depression. It is highly likely that different antide-
pressant medications, in producing their bottom-up
effects, may affect some of the same as well as
different limbic and subcortical areas and produce
effects that sometimes converge on the same mole-
cular and cellular targets, as may be the case for
AMPA receptors (see above) and for effects on
neurogenesis in the dentate gyrus.
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25 Rogó Z, Skuza G, Dlaboga D, Maj J, Dziedzicka-Wasylewska M.
Effect of repeated treatment with tianeptine and fluoxetine on the
central alpha(1)-adrenergic system. Neuropharmacology 2001;
41: 360–368.
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la tianeptine, nouveau stimulant du recaptage de la sérotonine
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